Semester	III	Course Title	Digital Electronics	Course Code	18 EC 34
Teaching Period	50 Hours	L – T – P – TL*	3 - 1 - 0 - 4	Credits	4
CIE*	40 Marks	SEE*	60 Marks	Total	100 Marks
			REDITS – 04		l
Course objective	es: This cou	irse will enable st	udents to:		
• Illustrate	e simplificat	tion of Algebraic e	equations using Karna	ugh Maps and Qu	ine-
McClusk	yTechnique	es.			
• Design c	ombination	al logic circuits.			
Design D	ecoders, Er	ncoders, Digital M	ultiplexer, Adders, Su	btractors and Bina	ary
Compara	ators.				
• Describe Latches and Flip-flops, Registers and Counters.					
Analyze Mealy and Moore Models.					
Develop state diagrams Synchronous Sequential Circuits.					
	0		Module – 1		
Principles of cor	nhination		of combinational log	ic canonical form	S Generation of
-		-	gh maps-3,4 variables		
(Don't care terms) Simplifying Max term equations, Quine-McCluskey minimization technique Variables. (Text 1, Chapter3). L1, L2,					
	, enapter s	-	Module -2		11, 12,115
Analysis and d	lesign of		logic: Decoders, B	CD decoders, E	ncoders, digital
multiplexers, Add	ers and Su	btractors, Cascadi	ing full adder , Look	ahead carry, Bina	ry comparators.
(Text 1, Chapter			-	-	L1, L2,L3
	-]	Module -3		
Flip-Flops & Its Application: Basic Bistable elements, Latches, The master-slave flip-flops (pulse-					
triggered flip-flop	os): SR flip	-flops, JK flip-flo	ps, Characteristic eq	uations, Register	s, binary ripple
counters, and syn	chronous bi	nary counters (T	ext 2, Chapter6).		L1,L2,L3
		I	Module -4		
Sequential Circu	it Design:	Design of a syn	chronous counters,	Design of a sync	hronous mod-n

counter using clocked T, JK, D and SR flip-flops. (Text 2,Chapter6)

Mealy & Moore models, State machine notation, Construction of State diagrams. (Text 1, Chapter 6) L1,L2,L3

Module -5

Application of Digital Circuits: Programmable logic devices, Complex PLD, FPGA, Sequential Circuit

design- Design of Sequential circuits using ROM's & PLAs, CPLDs & FPGAs (Text 3, 9.6 to 9.8,16.4 to 16.6)

L1, L2,L3

Course Outcomes: After studying this course, Students will be able to

- Acquire knowledge of Combinational and Sequential logic circuits.
- **Design** the combinational logic Circuits & Sequential Circuits.
- Analyse the performance of Synchronous/Asynchronous Sequential Circuits.
- **Design** and Develop Mealy and Moore Models for digital Circuits.
- **Design** of Combinational & Sequential Circuits, and is usuage in digital applications.

Text Books:

- Digital Logic Applications and Design, John M Yarbrough, ThomsonLearning, 2001. ISBN 981-240-062-1.
- DonaldD.Givone,—DigitalPrinciplesandDesign||,McGrawHill,2002.ISBN978-0-07-052906-9.
- Charles H Roth Jr., -Fundamentals of Logic Design, CengageLearning 5th Edition

Reference Books:

- D.P.KothariandJ.SDhillon,—DigitalCircuitsandDesign||,Pearson,2016, ISBN:9789332543539.
- Morris Mano, —Digital Design||, Prentice Hall of India, ThirdEdition.
- K. A.Navas, –ElectronicsLab Manual||,VolumeI, PHI, 5thEdition, 2015,ISBN:9788120351424.